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What is CONVERGE?

CONVERGE is an all-inclusive package for the CFD workflow
• CONVERGE Studio: Graphical user interface equipped with powerful geometry cleanup tools  

• CONVERGE solver: Autonomous meshing and advanced physical models lead to highly accurate solutions

• Post-processing software: Integrated ParaView module and Tecplot for CONVERGE licenses included at no extra cost

• CONVERGE Horizon: Cloud computing platform that offers easy and affordable access to state-of-the-art hardware

CONVERGE Studio Post-Processor



Autonomous Meshing in CONVERGE

• Traditional CFD codes require the mesh to be created manually before simulation

• Long meshing times

• Meshing by guessing 
(areas needing refinement often change in time)

• Low-quality mesh

• Hard to determine grid convergence 
(if you change your mesh, does your answer change?)

• CONVERGE automatically generates the mesh at runtime

• No user meshing time

• Adaptive Mesh Refinement (AMR) = no more guessing

• Orthogonal cells

• Grid-convergent modeling

Import Geometry Meshing Case Setup Solve

Import Geometry Case Setup Solve



Advanced Physical Modeling in CONVERGE

• Steady-state and transient solvers

• Fluid-structure interaction modeling

• Conjugate heat transfer modeling

• Multi-phase flow modeling

• Detailed chemistry solver

• Efficient combustion models

• State-of-the-art turbulence models

• Rich suite of chemistry tools

• Machine learning optimization

Spray burner



Computational domain and wind turbine locations

Wind

Wind Farm Design

• Wind farm configurations

• 25 NREL 5MW wind turbines

• Land area: 4.8 km * 2.6 km

• Neutral atmospheric condition with constant 
wind speed and direction

• Optimize layout for maximum power production



Mean velocity and turbulence kinetic energy (TKE) fields in a wind farm CFD simulation

Wind Farm CFD

• Wind farm model configuration:

• Mean wind speed: 12 m/s

• Turbulence intensity: 0.1 

• Domain size: 11 km * 6 km * 1 km in x, y, z

• Grid size:
• 256 m base grid
• 4 m at rotor
• 8 m in the wakes

• Turbulence model: Reynolds Stress RANS model

• Rotor model: RADM

• Physical time: 1 hour

• For each wind farm CFD run:

• Total cell count: 8 million

• Wall time: 2.5 hour on 1 Horizon node (192 cores)

5360 MW 2347 MW

>50% loss due to wake effect



Validations of RADM simulating a standalone NREL 5MW wind turbine at various wind speeds 
(The reference is from Jonkman et al, NREL/TP-500-38060, 2009)

Rotational Actuator-Disk Model (RADM)

• Capture key aerodynamics of wind turbines without resolving turbine blades

• Much lower computational cost

• Very good scalability for HPC

• Very efficient simulation of large wind farms



Rapid Optimization With Machine Learning

• Obtain training data with design of experiments (DoE)

• Sequential batches

• Train & test machine learning emulator

• Augment DoE if accuracy is unacceptable

• Run optimizer on emulator to obtain proposed optimum

• Obtain CFD result for proposed optimum 



Five Parameter Optimization for Max Power

• The y position of the center five wind turbines 
are allowed to vary +/- 187 m

• Total power of the wind farm (25 turbines)



DoE Definition

• Latin Hypercube Sampling (LHS)

• User-defined number of runs

• Random sampling within ‘cube’

• Iterate to maximize spacing between design points

• Maximize the minimum Euclidean distance between design points



DoE Definition

• Augment design

• Increase the number of ‘cubes’  

• Find which cube each original DoE point belongs to

• Place new designs in unoccupied cubes to create a valid DoE 
of total runs, iterate to maximize spacing

• (Or as close to valid LHS as possible)



Meta Learner ML Model

• ‘Best’ machine learning algorithm is unknown 
a priori

• Meta learner combines multiple ML strategies
• Ridge Regression

• alpha=0.0001

• Random Forest
• Depth 5, Trees 10

• Gradient Boosting
• Depth 5, Estimators 3000, learning rate 0.01

• Support Vector Machine
• Nu = 0.5, C = 16

• Neural Network
• 50 Neurons, 1 layer, Tanh activation, LBFGS optimizer

• Train/test method: “leave one out cross 
validation” (LOOCV)



Train/Test Results

• DOE 75: R2 = 0.50

• DOE 175: R2 = 0.83

• DOE 275: R2 = 0.87



Train/Test Results, 75 Samples

• LOOCV test result

• R^2 = 0.50

• RMSE = 0.74



Train/Test Results, 175 Samples

• LOOCV test result

• R^2 = 0.83

• RMSE = 0.42



Train/Test Results, 275 Samples

• LOOCV test result

• R^2 = 0.87

• RMSE = 0.36

• If results have noise or variability, the upper 
limit on accuracy will be less than 1



ML Model, 275 Runs 

• 1 minute to train

• Each execution of trained model takes 0.0005 secs



Optimization

• The ML emulator was optimized by the 
DIRECT algorithm

• NLOPT library, global optimizer

• Optimization 2.5 secs, 5000 evaluations

• The ML optimization ‘proposed’ optimum to be 
confirmed with CFD-predicted power



Active Learning Optimization

• The ML emulator was optimized to obtain a 
‘proposed’ optimum that was run in CFD to obtain 
the power

• Four successive optimums were obtained until 
‘best’ power case achieved

• Added to the training dataset to update the 
ML emulator

BEST 
CASE



Optimum

Best case:

R11: 5354.52 kW

R12: 5144.49 kW

R13: 4121.79 kW

R14: 3209.89 kW

R15: 3183.21 kW



Conclusions

• DoE ML optimization method

• Obtain DoE data in sequential batches until ML accuracy is achieved

• Cost-effective method

• DoE size unknown a priori (function of parameters and complexity of design space)

• Optimize multiple times to enhance local accuracy near optimum: active learning

• Found an optimum wind farm layout for power production
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