

MACHINE LEARNING-BASED SURROGATE MODEL IN CENTRIFUGAL PUMP DESIGN

SPE-GCS: AI Accelerated Physics Based Modelling and its Role in Energy Industry

Ani Rajagopal Industry Process Consultant, SIMULIA

Gulf Coast Section

Introduction

AI/ML in SIMULIA Fluids- Overview

AI/ML in SIMULIA Fluids - Results

Conclusions & Next Steps

2

Introduction

AI/ML in SIMULIA Fluids- Overview

AI/ML in SIMULIA Fluids - Results

Conclusions & Next Steps

4

3DEXPERIENCE © CFD | KEY VALUES

- Designer_centric user experience
- ▷ CAD & PLM-embedded CFD
- Guided User Interface
- Automatic fluid volume extraction
- One-click simulation model update with design changes
- Advanced design exploration
 - Process automation for trade-off studies
 - Multi-objective design space optimization \triangleright
 - ▷ Analytics driven decision support
- <u>Validated</u> for accuracy and efficiency
 - ▷ RANS based steady-state and long transient simulations
 - Native conjugate heat transfer
 - Laminar and turbulent flow with intelligent near- wall treatment
 - Robust hex-dominant body-fitted mesh with boundary layer
- <u>Jnified</u> multiscale multi-physical environment
- Capture multidisciplinary requirements (FSI, 3D CFD +1D)

MRF or Sliding Mesh

Incompressible Flow

Transient simulations

• Vol Flow Inter and

- Steady-state MRF, SST-kw
- KPI: Total Head Rise [Pa] across the system
- Hex mesh grid used as input (~3.5M elements for full domain)

• Vol Flow Inter 1

- Steady-state MRF, SST-kw
- KPI: Total Head Rise [Pa] across the system
- Hex mesh grid used as input (~3.5M elements for full domain)

8

35 SIMULIA

EREOFTAC PUMP | BASELINE MODEL

Sconfidential DSConfidential • √ane Inlet

Thickness → [Range = 6mm]

Adaptive DOE for the initial design spread •

36 Training set, 6 held-out set [3 test + 3 validation] •

FMK DOE containing 42 simulations, 4 parameters

Run#	Vane Inlet Angle	Vane Outlet Angle	Vane Outlet Dia	Vane Thickness
37	0.5	0.11	0.47	0.8
38	0.55	0.52	0.01	0.02
39	0.01	0.46	0.07	0.5
40	0.55	0.62	0.74	0.87
41	0.24	0.72	0.68	0.67
42	0.68	0.26	0.2	0.33

Validation Test

© Dassault Systèmes | Confidential Information | 2024

11

Vane Outlet Angle → [Range = 25°]

Angle →

[Range = 25°]

35 SIMULIA

Length \rightarrow [Range = 50mm]

Chord

Introduction

AI/ML in SIMULIA Fluids- Overview

AI/ML in SIMULIA Fluids - Results

Conclusions & Next Steps

Center-aligned slice of total pressure around the blades and vanes show good correlation

EREOFTAC PUMP | 3D SLICE PREDICTIONS

Top-view slice of total pressure around the blades and vanes show good correlation

- Head rise is the difference between 3D integration ٠ of inlet and outlet total pressure
- Overall average prediction error is around 1.72% •

© Dassault Systèmes | Confidential Information | 2024

15

35 SIMULIA

Introduction

AI/ML in SIMULIA Fluids- Overview

AI/ML in SIMULIA Fluids - Results

Conclusions & Next Steps

- Quality of data is crucial for any ML program
 - SIMULIA offers best-in-class multi-scale and multi-physics portfolio options
- AI/ML can be used successfully with parameterized DOEs built on 3DExperience CFD
 - Average total head rise prediction error under 1.72%
 - 3D field data is available for every predicted run in a matter of minutes
- Detailed 3D field prediction Fluid and Surface data
- Reduced hardware requirements Single GPU sufficient
- Expanding across other fluids applications

DS Confidention cal Contact anirudh.rajagopal@3ds.com

> Nicolas Fougere Industry Process Consultant Manager nicolas.fougere@3ds.com

John Higgins Industry Process Consultant john.higgins@3ds.com

35 SIMULIA

Q&A

Sales Contact

Chris Love

NAM SIMULIA Sales Representative Chris.love@3ds.com

Nicolas Fougere NAM SIMULIA Sales Expert hamish.nicole@3ds.com

