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BENEFITS OF SOLUTION

Left shifting of project execution

Deep Neural Network:
AI/ML uses existing data to 
accelerate early stage designs 
predictions in a wider design space

AI/ML
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Train Model

Predict Results

In Full 3D

Data 
Preparation

Data Set

Train Model Accuracy & Loss

valid

valid

Parametrized models: Geometry, BCs

Data set preparation from DOE

Run a DOE

Prediction OutputInput Parameters

Quasi-interactive design explorations Predictions in the matter of minutes

MACHINE LEARNING FOR 3D DESIGN EXPLORATION
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 Designer centric user experience

 CAD & PLM-embedded CFD 

 Guided User Interface

 Automatic fluid volume extraction 

 One-click simulation model update with design changes

 Advanced design exploration 

 Process automation for trade-off studies

 Multi-objective design space optimization

 Analytics driven decision support

 Validated for accuracy and efficiency 

 RANS based steady-state and long transient simulations

 Native conjugate heat transfer

 Laminar and turbulent flow with intelligent near wall 
treatment

 Robust hex-dominant body-fitted mesh with boundary layer 

 Unified multiscale multi-physical environment

 Capture multidisciplinary requirements (FSI, 3D CFD +1D)

MRF or Sliding Mesh

Incompressible Flow

3DEXPERIENCE © CFD | KEY VALUES

Transient simulations
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ERCOFTAC PUMP | BASELINE MODEL

Pr. 
Outlet

Vol Flow 
Inlet

Impeller

Stator 
Vanes

• Vol Flow Inlet = 0.3m^3/s | Impeller RPM = 2000 | Atmos Outlet

• Steady-state MRF, SST-kw

• KPI: Total Head Rise [Pa] across the system

• Hex mesh grid used as input (~3.5M elements for full domain)
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ERCOFTAC PUMP | BASELINE MODEL

• Vol Flow Inlet | Impeller RPM = 2000 | Atmos Outlet

• Steady-state MRF, SST-kw

• KPI: Total Head Rise [Pa] across the system

• Hex mesh grid used as input (~3.5M elements for full 
domain)
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ERCOFTAC PUMP | BASELINE MODEL

Total Pressure [Pa]

-800 -200 300

Velocity [m/s]

0 18 35

** Ubaldi, Marina, Pietro Zunino, Glovanna Barigozzi, and Andrea Cattanel. "An experimental investigation of stator induced unsteadiness on 

centrifugal impeller outflow." In Turbo Expo: Power for Land, Sea, and Air, vol. 78835, p. V001T01A002. American Society of Mechanical Engineers, 1994

Total Pressure, mass Flow 
avged [Pa]

CPUh

CFD Ubaldi Exp **

809.8 757 16

• Within 7% of value from Ubaldi, et al.

• Total gauge pressure and velocity plots
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WORKFLOW

Inputs:
• CFD Parametric DOE 

Results

1

Machine Learning 
Inference

Machine Learning 
Training

Outputs:
• Predicted 3D Fluid Field

(Velocity, Pressure, etc.)
• Predicted 1D Metrics (Pressure, 

X-Force, etc.)

3

Post Processing

2

If Model is not already trained

If Model is already trained

Order of hours

Order of mins
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ERCOFTAC PUMP | DOE • FMK DOE containing 42 simulations, 4 parameters

• Adaptive DOE for the initial design spread

• 36 Training set, 6 held-out set [3 test + 3 validation]

Run# Vane Inlet  Angle Vane Outlet Angle Vane Outlet Dia Vane Thickness

37 0.5 0.11 0.47 0.8

38 0.55 0.52 0.01 0.02

39 0.01 0.46 0.07 0.5

40 0.55 0.62 0.74 0.87

41 0.24 0.72 0.68 0.67

42 0.68 0.26 0.2 0.33

Vane Inlet 
Angle 
[Range = 25º]

Chord 
Length 
[Range = 50mm]

Vane Outlet 
Angle 
[Range = 25º]

Vane 
Thickness 
[Range = 6mm]

 Test  Validation
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ERCOFTAC PUMP | 3D SLICE PREDICTIONS

Center-aligned slice of total 
pressure around the blades and 
vanes show good correlation

Total Pressure - Gauge [Pa]

-1000 0 1000
CFD Prediction
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ERCOFTAC PUMP | 3D SLICE PREDICTIONS

CFD

Prediction

Top-view slice of total pressure 
around the blades and vanes 
show good correlation

Impeller 
Blade

Total Pressure - Gauge [Pa]

-1000 0 1000



15

©
 D

as
sa

ul
t S

ys
tè

m
es

 | 
C

on
fid

en
tia

l I
nf

or
m

at
io

n 
| 2

02
4 

ERCOFTAC PUMP | 3D PREDICTIONS

• Head rise is the difference between 3D integration 
of inlet and outlet total pressure

• Overall average prediction error is around 1.72%
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CONCLUSIONS

• Quality of data is crucial for any ML program

• SIMULIA offers best-in-class multi-scale and       
multi-physics portfolio options

• AI/ML can be used successfully with parameterized 
DOEs built on 3DExperience CFD

• Average total head rise prediction error under 
1.72%

• 3D field data is available for every predicted 
run in a matter of minutes

• Detailed 3D field prediction Fluid and Surface data

• Reduced hardware requirements Single GPU 
sufficient

• Expanding across other fluids applications

Order of mins

Input Parameters Prediction Output

Particle Tracking Acoustics
dBMaps & SPL

Internal Flows
Mass Flow, Temperature & Pressure Drop
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