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 The oldest plasma assisted ignition technology is the spark 

plug that dates back to 1858

 Why further research on plasma ignition devices is needed?

 The thermal plasma discharge lasting milliseconds, commonly used in 

spark-ignition engines and gas turbines, may not be the optimal solution 

for igniting challenging fuel mixtures

INTRODUCTION
PLASMA ASSISTED IGNITION
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* Adapted from, Y. Ju, W. Sun,

Plasma assisted combustion:

Dynamics and chemistry,

Progress in Energy and

Combustion Science 48 (2015)
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 Challenges
 Non-equilibrium processes

 Multi-timescales

 Complex chemical kinetics

 Common solution approaches
 Reduce Plasma Chemistry

 Lump excited species

 Phenomenological models

 Data-driven model

 Research gaps
 Limited capabilities for multi-dimensional 

simulations of PAI using detailed plasma 
chemistry

 Understanding the influence of plasma 
excited species on combustion and transport

CHALLENGES & GAPS
PLASMA ASSISTED IGNITION

* Adapted from, Y. Ju, W. Sun, Plasma assisted combustion: Dynamics

and chemistry, Progress in Energy and Combustion Science 48 (2015)
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 Theoretical Modeling
 Assemble a toolbox of physics based 0D and 1D models

 Data-driven Model development
 Develop a machine learning framework to model plasma kinetics

 New feature selection method based on Directed Relation Graphs

 Multi-dimensional Modeling
 Extend the capabilities of model plasma assisted ignition in realistic configurations

Develop a data-driven modeling framework capable of replicating 

the effect of a plasma discharge on a reacting gas mixture
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OBJECTIVES
PLASMA ASSISTED IGNITION



 The kinetic model in 2 parts:

 Plasma kinetic model

 Combustion kinetic model

 Plasma kinetic model (PKM) includes:

 Excited species quenching reactions

 Electron-ion recombination reactions

 Charge exchange reactions

 Excitation and ionization electron collision 

reactions

 Combustion kinetic model (CKM) includes:

 Excited species quenching reactions

 Electron-ion recombination reactions

 Charge exchange reactions

 Neutral ground state species-reactions

0D REACTOR MODEL
FRAMEWORK

NSD: NanoSecond Discharge

 The adopted model couples

 ZDPlasKin (needs to know 𝐸/𝑁)

 CHEMKIN (0D SENKIN)

ZDPlasKin𝑇, 𝑌1→𝐾𝐾 CHEMKIN𝑇∗, 𝑌1→𝐾𝐾
∗

PKM Cross-section data CKM

𝑇, 𝑌1→𝐾𝐾

NSD NSDCHEMKIN

Pulse PulseInterpulse

𝐸/𝑁
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 Model Assumptions:

 A two-fluid model is adopted for 

electrons and heavy species with two 

different temperatures

 The discharge properties only vary in 

the direction perpendicular to the 

electrodes

 Drift-diffusion approximation for fluxes

 Local field approximation

 Uniform pre-ionization in the discharge 

volume

1D REACTOR MODEL
FRAMEWORK

 Governing equations during the Pulse
𝜕𝑛𝑘

𝜕𝑡
+ 𝜵 ∙ 𝚪𝒌 = ሶΩ𝑘  Species equations

𝚪𝐤 = 𝑞𝑘𝜇𝑘𝑛𝑘𝑬 − 𝐷𝑘𝛁𝑛𝑘  Drift diffusion assumption

𝑬 = −𝜵𝜙

𝜵 ∙ 𝜀𝑑𝜵𝜑 = −
𝑒

𝜀0
(𝑛+ − 𝑛− − 𝑛𝑒)

𝜌
𝜕𝑒𝑔
𝜕𝑡

= −𝛻 ∙ 𝒒 + 𝐴𝑐𝑜𝑙𝑙 + ሶ𝑄𝐽𝐻

𝑞 = 𝜆𝛁𝑇𝑔 +

𝑘

𝚪𝒌𝐶𝑝,𝑘𝑇𝑔

𝐴𝑐𝑜𝑙𝑙 =
3

2
𝑘𝑏𝑛𝑒

2𝑚𝑒

𝑚𝑔
𝜈𝑒,𝑔 𝑇𝑒 − 𝑇𝑔 +

𝑗

Δ𝐸𝑗
𝑔
𝑟𝑗

ሶ𝑄𝐽𝐻 = 𝑒𝑬 ∙

𝑘

𝑞𝑘𝚪𝒌
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 Operating Conditions
 1D plane-to-plane geometry

 Pressure = 0.07 [atm] ~ 50 [torr]

 Temperature  = 300 [K]

 Applied Electric potential (𝑉𝑎𝑝𝑝)

 𝑡𝑝𝑢𝑙𝑠𝑒 = 100 [𝑛𝑠]

 𝑉𝑎𝑝𝑝 range [ - 22 : 17 ] KV

 Plasma kinetics: 

 18-species, 115-reaction mechanism 

based on (Uddi 2009, Nagaraja 2013)

Discharge gap

(L=1cm)

V

Keisuke Takashima et al 2013 Plasma Sources Sci. Technol. 22 0150138

1D REACTOR MODEL
VALIDATION – NRP PLASMA IN AIR

NRP: NanoSecond repetitively pulsed



 Reduced electric field (E/N)

 3 peaks (~500, ~50, ~40 Td)

 The highest peak is responsible for 

electronic excitation and ionization

 O atom concentration history

 Agreeable matching for the multipulse

measurements

 Concentration keeps building up

4~5 Days to complete the simulation of 10 pulses
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1D REACTOR MODEL
VALIDATION – NRP PLASMA IN AIR



 The main issue with 0D reactor model is how to tune the model

 Proposed solution: Use 1D results of E/N for a given pressure to calibrate 

the 0D model for multi pulse simulations
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0D REACTOR MODEL
VALIDATION – NRP PLASMA IN AIR



B

A

FC D

E

RRT(P,T,X)

Directed Relation Graph

Dataset

Dataset Gathering Feature selection Model Learning Model Deployment

Tuning of GPR model 

hyperparameters

P, T, X

Features : {𝑃, 𝑇, 𝑋1:𝑘𝑘} at the start of the pulse 

Labels : {𝜔1:𝑘𝑘} over a single pulse

GPR CHEMKIN

Dataset ZDPlasKin ZDPlasKinCHEMKIN

Pulse PulseInterpulse

DEVELOPMENT OF DATA-DRIVEN MODELS
FRAMEWORK

GPR GPR
11



 The kinetic model is separated into 2 parts: 

(26 species)

 Plasma kinetic model (ZDPlasKin)

 Electron impact reactions

 Excited species Relaxation

 Combustion kinetic model (CHEMKIN)

 Excited species Relaxation

 Combustion kinetics 

DEVELOPMENT OF DATA-DRIVEN MODELS
DATASET

 Targeted Experimental conditions*
 Stoichiomeric 𝐻2/𝐴𝑖𝑟
 Pressure        = 54   ~ 144   Torr

 Temperature  = 373 ~  473  K

 Frequency     = 20   ~  40   kHz

 𝑉𝑎𝑝𝑝 = - 22 ~ 17 KV

 𝑡𝑝𝑢𝑙𝑠𝑒 = 100 ns

* Yin, Zhiyao, Keisuke Takashima, and Igor V. Adamovich. "Ignition time measurements in repetitive nanosecond pulse hydrogen–air plasmas at 

elevated initial temperatures." IEEE Transactions on Plasma Science 39.12 (2011): 3269-3282.

ZDPlasKin ZDPlasKinCHEMKIN

Pulse PulseInterpulse
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DEVELOPMENT OF DATA-DRIVEN MODELS
DATASET

64Torr

473K

40kHz

104Torr

473K

40kHz

84Torr

373K

40kHz

104Torr

473K

40kHz

Sampled ~ 7000 tuples

 Training dataset

 {(𝒙𝑖 , 𝑦𝑖) ; 𝑖 = 1,2, … , 𝑛} where n is number 

of sample points

 𝒙𝑖 : carries the features which are 

𝑃 𝑇 𝑋1:𝑘𝑘

 𝑦𝑖 : carries the labels which are 

 Δ𝑋1:𝑘𝑘 /𝑝𝑢𝑙𝑠𝑒
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 Inference

Involves inverting the covariance matrix which 

might be expensive in the case of large 

datasets

 Method

 Gaussian process regression GPR with an 

exponential kernel

 Model hyper-parameters are varied to maximize the 

likelihood of reproducing the target output

DEVELOPMENT OF DATA-DRIVEN MODELS
TRAIN GPR MODEL

Trained models hold normalized RMSE below 3%

𝜎 = 1
𝑙 = 0.5

𝜎 = 1
𝑙 = 2

𝜎 = 3
𝑙 = 0.5
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DEVELOPMENT OF DATA-DRIVEN MODELS
A GPR-CHEMKIN MODEL

 GPR model coupled to CHEMKIN

 All species source terms were 

modeled, except for 𝐸, 𝑂2, 𝑁2, and 𝐻2

 Element Conservation

 𝐸,𝑂2, 𝑁2, and 𝐻2 are excluded from the 

model correction 

𝜃1→4 = 𝜈𝑖𝑗 ⋅ ΔXj

where:

 𝜃 = Δ𝑋𝐸 , 2Δ𝑋𝑂2 , 2Δ𝑋𝑁2 , 2Δ𝑋𝐻2
𝑇

 𝜈𝑖𝑗 is the 𝑖𝑡ℎ element in the 𝑗𝑡ℎ species (𝑗

= 5:𝐾𝐾)

GPR GPRCHEMKIN

Pulse PulseInterpulse

GPR𝑃, 𝑇, 𝑌1→𝐾𝐾 CHEMKIN𝑃, 𝑇∗, 𝑌1→𝐾𝐾
∗ P, T, 

𝑌1→𝐾𝐾

GPR model accelerated plasma 

source term evaluation by 30-fold
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Test case:

 P = 84Torr

 40 kHz

 Stoichiometric 𝐻2/𝐴𝑖𝑟 mixture

DEVELOPMENT OF DATA-DRIVEN MODELS
FIRST RESULT FROM THE GPR MODEL
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 Weigh the coupling of species (B) to the

production rate of a specific species (A)

𝒓𝑨𝑩 =
σ𝒊=𝟏,𝑰 𝝂𝑨,𝒊𝝎𝒊𝜹𝑩𝒊

σ𝒊=𝟏,𝑰 𝝂𝑨,𝒊𝝎𝒊

 Species having couplings stronger than a

specified threshold 𝜀 are kept as part of feature

subset of that source term

 This process is done for each species of

interest to select the most important features for

its production

DEVELOPMENT OF DATA-DRIVEN MODELS
FEATURE SELECTION – DIRECTED RELATION GRAPHS (DRG)

B

A

FC D

E
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DEVELOPMENT OF DATA-DRIVEN MODELS
DRG MERIT IN ML TRAINING

18

 Same dataset

 GPR – Full features:

 Trained on the whole feature matrix

 GPR – Reduced features:

 Trained on feature matrix subsets 

selected via DRG per species 

source term.

 Test case:

 P = 84Torr

 40 kHz

 Stoichiometric 𝐻2/𝐴𝑖𝑟 mixture



DEVELOPMENT OF DATA-DRIVEN MODELS
DRG MERIT IN ML TRAINING
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Cross: Theoretical

Line: GPR – Reduced features



 Model applied to a wider range of operating conditions: two pulsing
frequencies (40 and 20 kHz) and two temperatures (373K and 473K)

 Excellent agreement between the predicted ignition delay using the GPR
model with experiments

DEVELOPMENT OF DATA-DRIVEN MODELS
EXTENDED VALIDATION
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 Plasma discharge
 E/N  150 Td

 Frequency  10 kHz

 𝜎𝑝𝑢𝑙𝑠𝑒 = 1.1 × 106 𝐽/𝑚3

with ~45% going into 

vibrational excitation

 𝑟𝑑 = 225 𝜇𝑚

 𝐿𝑑 = 4 𝑚𝑚

 Initial conditions

 𝐶𝐻4 − 𝐴𝑖𝑟 @ 𝜙 = 0.8

 300 𝐾, 1 𝑎𝑡𝑚

*Castela, Maria, et al. "Modelling the impact of non-equilibrium discharges on reactive mixtures for

simulations of plasma-assisted ignition in turbulent flows." Combustion and flame 166 (2016): 133-147.

 Chemistry models
 Combustion kinetic model: Based on 

FFCM2 (25 species)

 Plasma kinetics: GPR model trained 

via  FFCM2 + Plasma in air core mech 

(37 species in total)

 Sampling range: 𝜙 = 0.5 − 1.5, 𝑇0
= 300 − 1500 𝐾

 Solver and numerical setup
 Spectral element solver Nek5000

 Low-Mach number formulation

 64 × 64 elements with 7th order 

polynomial
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Ω

MULTI-DIMENSIONAL MODELING OF PLASMA 
ASSISTED IGNITION
2D DNS setup following Castela 2016



50 n𝑠 80 𝜇𝑠

Quisc.

𝑅𝑒𝑡 = 44

𝑌𝐶𝐻2𝑂
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IGNITION KERNEL EVOLUTION AFTER FIRST PULSE



100.05 𝜇𝑠 180 𝜇𝑠

Quisc.

𝑅𝑒𝑡 = 44

𝑌𝐶𝐻2𝑂
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IGNITION KERNEL EVOLUTION AFTER SECOND PULSE



 A data driven modeling framework has been developed for NRP plasma
kinetic influence on a reacting mixture
 Assembled a toolbox of 0D and 1D models for dataset generation

 Developed a GPR model to predict plasma species source terms

 Embedded physical insights (DRG based feature down selection and elemental
conservation) to improve GPR model accuracy

 The GPR model provides a 30-fold speedup in evaluating the plasma source terms
compared to ZDPlasKin using detailed chemistry

 Extended GPR-CHEMKIN model to multi-dimensional simulations

 Demonstrated the effectiveness of the GPR model in enabling affordable 3D simulations 
of plasma assisted ignition with spectral element code Nek5000

 The role of non-equilibrium species in the ignition process has been shown to accelerate 
the ignition process

SUMMARY AND CONCLUSIONS
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