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Disclaimer

• This work is done in collaboration with NETL: Chung Yan Shih, Paul Holcomb and others  (Energy Analysis | 
netl.doe.gov ) using NVIDIA Modulus

• This project is part of Department of Energy (DOE) Science-informed Machine Learning for Accelerating Real-Time 
Decisions in Subsurface Applications (SMART) Initiative led by team at NETL and work is partially presented at GTC.

https://netl.doe.gov/energy-analysis/details?id=bfcbe8ac-76a1-48b8-a76a-4c00c7d39abc
https://netl.doe.gov/energy-analysis/details?id=bfcbe8ac-76a1-48b8-a76a-4c00c7d39abc


SOTA Model Architectures

Easily explore physics-ml model architectures 
– Neural Operators, PINNs, GNNs, Diffusion 

Models.

Multi-domain support

Build physics-ml models for CFD, Heat 
Transfer, Structural, Electromagnetics, 

Molecular Dynamics 

Support

NVIDIA AI Enterprise and experts by your side 
to keep projects on track

General Availability – Part of NV AIE (Starting NV AIE 4.0) 
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Simulation Workflow

Model 
Development

Modulus Framework

Training Dataset

Distributed Training Model Exploration Inference - AI Surrogate Model

Engineers & 
Scientists

Geometry & Physics 
based guard-railing

Optimized Training

Accelerate training and throughput by 
parallelizing the model and the training data 

across multi-node.
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NVIDIA Modulus 
Framework to build and customize Physics-ML models



Energy Climate and Weather Industrial HPC

Design Optimization Healthcare

NVIDIA Modulus 
Various simulation domains and case-studies

Applications like sub-surface flows for oil 
reservoirs or carbon storage, turbulent flows 

around wind turbine or power generation 
systems that require physics-ml surrogate 

models

Physics ML surrogates 
for simulating weather 
and climate at various 
scales – global to local

Physics ML surrogates to explore the design space 
characterized by physical parameters

Physics ML 
surrogates for 
accelerating 
traditional 

simulation-based 
design workflows

Physics ML surrogates for accelerating 
traditional simulation-based design workflows



Open-Source AI Toolkit for Physics-based ML

Modulus Model Zoo - Diverse Physics-ML approaches:

• fully Physics driven AI models

• fully data driven AI models

• hybrid (data + Physics) AI models

Neural Operators:

• Fourier Neural Operator family (FNO, AFNO, PINO)

• DeepONet 

• Transformer Neural Operator

GNNs:

• GraphCast

• MeshGraphNet ..

Diffusion Models:

• DDPM++

• NCSN++

• ADM ..

Physics informed Neural Networks (PINNs):

• Fourier Feature Network

• Spatial-temporal Fourier Feature Networks

• Super Resolution Net …

• Bringing novel AI architectures that have demonstrated success for engineering and 

science problems

• Using case studies as reference starting points

Physics

Da
ta

Fully data 
driven

Inductive 
bias

Physics 
constrained

Fully physics 
driven

GNNs, Diffusion models

Neural Operators (NOs)

PINNs

PI-GNNs, PINOs

SOTA architectures for ML training 



What are Graph Neural Networks (GNNs) ?
Node, Edge and Global features

• GNN is a deep learning framework that operates on graph type 
objects

• Examples of graphs : social networks, molecular structure, 
communication network, traffic networks, citation networks, meshes 
etc. 

• GNNs can be leverage the graph structure to perform three type of 
prediction tasks:

1) Node level : predicting unknown quantities for graph nodes
2) Edge level : predicting the existence of missing links b/w nodes
3) Graph or Global level : predicting unknowns for entire graph

A Graph

Edge
Node



Fluid Flow
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Graph Neural networks for mesh-based simulation
Flow past cylinder
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Graph Neural networks for flow past cylinder: Encoding
Node and edge feature encoding
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Fluid Flow
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Graph Neural networks for flow past cylinder: Processing
Message passing for node embeddings

Nodes

Edges

M(t)

ni

ni+1
ei

ei+2

ei+1

ei+3

ei+4

ei+5
ni

ni+1
ei

ei+3

ni
∑ei

Node n’i

ei+1

ei+2
ei+4

ei+5

Message passing



Fluid Flow
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Graph Neural networks for flow past cylinder: Processing
Message passing for node embeddings
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Fluid Flow
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Graph Neural networks for flow past cylinder: Decoding
Node and edge feature encoding
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Fluid Flow
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Graph Neural networks for flow past cylinder
Meshgraphnet

Nodes

Edges

Step 2: Processing:  Update node 
and edge embeddings using 

message-passing
Step 1: Encoding: encode features 

as node and edge embeddings 

M(t) M(t+1)

Update

M(t+1) = M(t) + q(t)

q(t)

Step 3 Decoding: Generate updated 
feature from  new edge and node 

embeddings 



Graph Neural networks for flow past cylinder

• Why use Graph Neural Networks or 
Meshgraphnets

• Can handle structured and unstructured 
grids, mesh deformities, discontinuities etc

• Generalization over meshes, boundary 
conditions, material properties

• Parameter sharing in GNNs helps to learn 
transient simulations better



National Climate Task Force Goals
Why it is important for NETL and NVIDIA ?

Established by President Joe Biden to reduce emissions, increase resilience, 
advance environmental justice, and achieve true energy security



IBDP: Illinois Basin Decatur Project (IBDP)
Demonstrated the feasibility of Carbon Capture and Storage as a Critical path

• Safely and effectively demonstrate the full carbon capture, utilization, and storage (CCUS) value chain 
in a saline reservoir

• Project stored CO2 from ADM’s ethanol fermentation plant. Operations consist of a 
compression/dehydration facility, a delivery pipeline, one injection well, one deep 
observation/verification well, and a geophysical test well, all developed on the ADM-owned site

• 1 million metric tons of CO2 have been injected into an extensive reservoir with no difficulties. 

• One of the first EPA Underground Injection Control Class VI permits (CO2 storage well). 



IBDP Dataset
Update blue node from initial state to the next state
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Saturation Prediction (1-36 months)
Trained on 12 months dataset

Ground Truth Prediction Difference



Saturation RMSE
Trained on 12 months dataset

Without Multi-step Rollout With Multi-step Rollout

• Predicting multiple steps performs 
slightly better than predicting single 
step in GNN with 93% accuracy

• More advanced models: Graph 
Transformer are giving much better 
results with 98% accuracy

 



Conclusion

• GNNs can learn complex physical system interactions such as in CCS simulations

• GNNs offer generalization over different meshes, boundary conditions, material properties, 
unstructured data, mesh discontinuities etc.

• The results from the latest model will be shared after getting approval from DOE/NETL at GTC 
2025  or other relevant conferences
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