Predicting CO2 Plume Migration in Carbon Storage Projects using **Graph Neural Networks**

Harpreet Sethi PhD, Solutions Architect Email: hasethi@nvidia.com

- <u>netl.doe.gov</u>) using NVIDIA Modulus

Disclaimer

This work is done in collaboration with NETL: Chung Yan Shih, Paul Holcomb and others (Energy Analysis)

• This project is part of Department of Energy (DOE) Science-informed Machine Learning for Accelerating Real-Time **Decisions in Subsurface Applications (SMART) Initiative** led by team at NETL and work is partially presented at GTC.

Build physics-ml models for CFD, Heat Transfer, Structural, Electromagnetics, Molecular Dynamics

Accelerate training and throughput by parallelizing the model and the training data across multi-node.

NVIDIA Modulus

Framework to build and customize Physics-ML models

Optimized Training

SOTA Model Architectures

Easily explore physics-ml model architectures – Neural Operators, PINNs, GNNs, Diffusion Models.

General Availability – Part of NV AIE (Starting NV AIE 4.0)

Engineers & Scientists

Support

NVIDIA AI Enterprise and experts by your side to keep projects on track

reservoirs or carbon storage, turbulent flows around wind turbine or power generation systems that require physics-ml surrogate models

NVIDIA Modulus

Various simulation domains and case-studies

Climate and Weather

Physics ML surrogates for simulating weather and climate at various scales – global to local

Design Optimization

Physics ML surrogates to explore the design space characterized by physical parameters

Industrial HPC

Physics ML surrogates for accelerating traditional simulation-based design workflows

Healthcare

Physics ML surrogates for accelerating traditional simulation-based design workflows

Open-Source AI Toolkit for Physics-based ML

- science problems
- Using case studies as reference starting points

Physics

SOTA architectures for ML training

Bringing novel AI architectures that have demonstrated success for engineering and

Neural Operators (NOs)

PI-GNNs, **PINOs** PINNs Fully physics driven

Modulus Model Zoo - Diverse Physics-ML approaches:

- fully Physics driven AI models
- fully data driven AI models
- hybrid (data + Physics) AI models

Neural Operators:

- Fourier Neural Operator family (FNO, AFNO, PINO)
- DeepONet
- Transformer Neural Operator

<u>GNNs:</u>

- GraphCast
- MeshGraphNet ..

Diffusion Models:

- DDPM++
- NCSN++
- ADM ..

Physics informed Neural Networks (PINNs):

- Fourier Feature Network
- Spatial-temporal Fourier Feature Networks
- Super Resolution Net ...

- objects
- Examples of graphs : social networks, molecular structure, etc.
- prediction tasks:

What are Graph Neural Networks (GNNs)? Node, Edge and Global features

• GNN is a deep learning framework that operates on graph type

communication network, traffic networks, citation networks, meshes

• GNNs can be leverage the graph structure to perform three type of

1) Node level : predicting unknown quantities for graph nodes 2) Edge level : predicting the existence of missing links b/w nodes 3) Graph or Global level : predicting unknowns for entire graph

A Graph

Fluid Flow

Graph Neural networks for mesh-based simulation Flow past cylinder

Wall

Inflow

Outflow

Graph Neural networks for flow past cylinder: Encoding Node and edge feature encoding

Node

Outflow

Edge

1. <u>Pressure (p), velocity (v), node type (t)</u> as input **node features.** 2. <u>Relative position vector (d) and its norm ([d])</u> as input **edge** features

Graph Neural networks for flow past cylinder: Processing Message passing for node embeddings Wall M(t)

Node

Outflow

Message passing

Graph Neural networks for flow past cylinder: Processing Message passing for node embeddings

Graph Neural networks for flow past cylinder: Decoding Node and edge feature encoding

Node

Outflow

embeddings

- Why use Graph Neural Networks or Meshgraphnets
 - Can handle structured and unstructured grids, mesh deformities, discontinuities etc
 - Generalization over meshes, boundary conditions, material properties
 - Parameter sharing in GNNs helps to learn transient simulations better

Graph Neural networks for flow past cylinder

Ground Truth

REDUCING U.S. GREENHOUSE GAS EMISSIONS BELOW 2005 LEVELS

IN **H**

> Established by President Joe Biden to reduce emissions, increase resilience, advance environmental justice, and achieve true energy security

National Climate Task Force Goals Why it is important for NETL and NVIDIA?

IBDP: Illinois Basin Decatur Project (IBDP) Demonstrated the feasibility of Carbon Capture and Storage as a Critical path

- in a saline reservoir

• Safely and effectively demonstrate the full carbon capture, utilization, and storage (CCUS) value chain

• Project stored CO2 from ADM's ethanol fermentation plant. Operations consist of a compression/dehydration facility, a delivery pipeline, one injection well, one deep observation/verification well, and a geophysical test well, all developed on the ADM-owned site

• 1 million metric tons of CO2 have been injected into an extensive reservoir with no difficulties.

One of the first EPA Underground Injection Control Class VI permits (CO2 storage well).

Name	IBDP Model
Source	Phase 2 WP 2C.3
Inputs	Porosity, permeability, fault transmissivity modifiers, horizons (or formation indexes) @ 1M tons / 30-year rate
Outputs	Pressure, Saturation
Injection Wells	1
Grid Size	9.7 mile x 9.3 mile
Timestep	3 years injection, 1 year post-injection
Samples	100

IBDP Dataset Update blue node from initial state to the next state

IBDP Grid

Figure 67. Dynamic model domain and tartan grid.

Avg. Permeability

Avg. Porosity

Saturation Prediction (1-36 months) Trained on 12 months dataset

- Predicting multiple steps performs slightly better than predicting single step in GNN with 93% accuracy
- More advanced models: Graph Transformer are giving much better results with 98% accuracy

Saturation RMSE Trained on 12 months dataset

Without Multi-step Rollout

—— With Multi-step Rollout

- unstructured data, mesh discontinuities etc.
- **2025** or other relevant conferences

Conclusion

GNNs can learn complex physical system interactions such as in CCS simulations

• GNNs offer generalization over different meshes, boundary conditions, material properties,

• The results from the latest model will be shared after getting approval from DOE/NETL **at GTC**

