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Large eddy simulations (LES)
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Closure modeling for LES
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Data-driven closure modeling
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1. Should require no direct numerical simulation (DNS) flow-fields. Should work in 
data-limited scenarios.

2. Should require no knowledge of true low-pass spatial filter. (Impossible to know 
anyway for anything realistic).

3. When possible, it should use derived quantities.

Strategy: PDE-constrained optimization - “A-posteriori learning”
Some (not all) recent work:

- Chen, Xianyang, Jiacai Lu, and Grétar Tryggvason. "Finding closure models to match the time evolution of coarse 
grained 2D turbulence flows using machine learning." Fluids 7, no. 5 (2022): 154.

- List, Björn, Li-Wei Chen, and Nils Thuerey. "Learned turbulence modelling with differentiable fluid solvers: 
physics-based loss functions and optimisation horizons." Journal of Fluid Mechanics 949 (2022): A25.

- Sirignano, Justin, Jonathan F. MacArt, and Jonathan B. Freund. "DPM: A deep learning PDE augmentation method 
with application to large-eddy simulation." Journal of Computational Physics 423 (2020): 109811.

Other desiderata:
4. Should be compatible with unstructured, anisotropic, potentially time-varying, 

adaptive grids.
5. We wish to avoid the redevelopment of a forward solver.
6. Amenable to numerical analysis to identify sources of error.
7. Quantify uncertainty during deployment.

What is a desirable data-driven closure
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A-posteriori turbulence modeling

15



Background: Neural ordinary differential equations

Given snapshots of u and an assumption of data being generated 
from autonomous systems - our goal is to identify f in:

With snapshots of training data

Using a loss-function as follows for various \tau:

True trajectory Predicted trajectory

Chen et al., NeurIPS 2018 (Best paper award)
Previously also explored by Kevrekidis and 
collaborators in early 90s
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The differentiable physics approach

Goal: Leverage rich developments in adjoint-based 
techniques for numerical solutions of partial 
differential equations.
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V. Shankar, D. Chakraborty, V. Vishwanathan, R. 
Maulik: Differentiable turbulence I: LES closure as 
a PDE-constrained optimization, 
arXiv:2307.03683



The differentiable physics approach

Note: Target data is merely partial observation of DNS! No 
filter assumptions.
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Chaotic differentiable physics

Computing sensitivities of chaotic systems brought from cubic to linear complexity!
Chakraborty, D., Chung, S. W., & Maulik, R. (2024). Divide And Conquer: Learning Chaotic Dynamical 

Systems With Multistep Penalty Neural Ordinary Differential Equations. arXiv preprint arXiv:2407.00568 
(CMAME to appear)
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Assessments

Training performance assessed in a-posteriori deployments using correlations with randomly 
sampled-DNS (Re=1000 with primitive formulation). Note: Training data is merely subsampling a 
DNS grid (2562 to 642). We don’t assume any filter! FDNS = Subsampling (potentially 
randomly) DNS.
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Network architectures

Perfectly local 
inputs for 
perfectly local 
outputs

CNN: Iterative 
convolution 
operations for 
non-local 
influence on 
predictions - 
LeNet (Le-Cun)

FNO: Fourier Neural 
Operator that learns a 
function approximation 
that is perfectly global

Model-free symmetric superior 
for training assessments
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Results - decaying turbulence (Re=8000)
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Results - forced turbulence (k=4, Re=1000)
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Generalization

Decaying - Re 8000

Forced at k=4, Re = 
1000

Forced at k=4, Re = 30

Forced at k=4, Re = 
8000

Forced at k=8, Re = 
8000
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Quantifying uncertainty via deep ensembles

26Morimoto, Masaki, Kai Fukami, Romit Maulik, Ricardo Vinuesa, and Koji Fukagata. "Assessments of epistemic uncertainty 
using Gaussian stochastic weight averaging for fluid-flow regression." Physica D: Nonlinear Phenomena 440 (2022): 133454.



Quantifying uncertainty
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Inflection point in standard deviation of ensemble 
predictions when correlation with DNS is lost completely.



A more realistic test-case for 
data-driven closure modeling. 
Characterized by separation, 
anisotropy, sharp gradients -> not 
amenable to structured-grid neural net 
architectures!

Towards realistic cases
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A multiscale graph neural network

S. Barwey, V. Shankar, V. Vishwanathan, R. Maulik: 
Multiscale graph neural network autoencoders for 
interpretable scientific machine learning, Journal of 
Computational Physics, 2023

Multiscale Graph Neural Network closure for 
unstructured grids
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End-to-end differentiable modeling

Goes to a stochastic 
gradient descent type 
optimizer (here ADAM)

Computed via ground truth 
trajectories at some sensor 
locations in flow-field. In 
this case - a grid that is 
~15x finer. But could be 
experimental observations 36



Quantitative metrics

Training time: 6 hours on 2 V100s 
(needs optimization)
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Quantitative metrics

Shankar, Varun, Romit Maulik, and Venkatasubramanian 
Viswanathan. "Differentiable Turbulence II." arXiv preprint 
arXiv:2307.13533 (2023).
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Predictions of a dynamically varying Smagorinsky coefficient from graph multiscale NN

What have we learned?
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Please reach out for discussions!
Acknowledgements: DOE ASCR/SCIDAC RAPIDS,

NSF GRFP

Efforts underway

1. Scaling up cyber-infrastructure for realistic applications.
2. Multifidelity data and model fusion during training.
3. Long rollout times with chaotic systems (somewhat solved - 

happy to discuss more)
4. Theoretical connections to Bayesian inference.
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