Using AI/ML to Accelerate Engineering Simulations for Asset Design and Optimization

SPE Gulf Coast Section August 22nd, 2024

VEDANTH SRINIVASAN

WW Head of Solutions, Engineering & Design Solutions & Go To Market Amazon Web Services Email: <u>Vedsrin@amazon.com</u>

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Agenda

- Background and Challenges
- AI/ML for Engineering Simulations
- Applications & Demonstrations
- Next Steps

Product Lifecycle: Design, Development & Operations

Optimal asset design needs to cover large trade space studies consistent with the requirements

Challenges in traditional design space exploration

Can't explore sufficient design iterations to find an optimal performance Time-consuming and costly to run high fidelity physics-based simulations

Leverage existing data for simulation intelligence

AWS Engineering Simulation Tech Stack

Overview – AI/ML Techniques and Applications

AI/ML for Engineering Simulation Workflows

Asset Design: Fluid Injection Application

ML ASSISTED TRANSIENT SIMULATIONS

Scenario: Foam injection use case involves injecting a liquid which hardens into a foam to provide structural strength for panels.

Challenge: Find optimal injection trajectory to maximize contact surface and minimize void formation and foam wastage

Approach: Optimize the foam injection path to maximize foam volume using a genetic algorithm

Outcome: reduced total amount of foam injected by 8% while maximizing contact surface to 15%

Design structure Foam injection trajectory/path

> Initial foam injection

Asset Design & Optimization: Fluid Injection

Simulation Optimization Details

- 10 design iterations, each with 128 simulations (1280 foam growth simulations)
- Best of 128 was used to seed next design iteration (Genetic Algorithm)
- Structured grid 16.7M cell count
- Runtime per simulation (9-11.5 min: ~5min simulation, ~5-6min post-processing)

Al Driven Design

Asset model

- Images* / Scans
- CAD / DWG
- Requirements
 - KPI (Mfg, Cost, CTQs..)

 $\rightarrow)$

- 2D/3D Sim. Fidelity
- Existing results
 - Simulation
 - Testing
 - Field operations

*Image to 3D model through Stable Diffusion pipeline

Geometry modification based on inputs

Seamless extract design options based on KPI (Performance (ΔP , Mixing ratio), Cost, Material...)

Ref: https://aws.amazon.com/blogs/hpc/conceptual-design-using-generative-ai-and-cfd-simulations-on-aws/

Generative AI for Design Iterations

WORKFLOWS AND SIMULATION PREPARATION

User Centric Workflows

Neural Kernel Surface

Reconstruction (NKSR)

Ref: https://aws.amazon.com/blogs/hpc/conceptual-design-using-generative-ai-and-cfd-simulations-on-aws/

Physics Enabled GenAI Design Acceleration

"make the car sporty and aerodynamic"

400 OpenFoam Simulation (375 training, 25 validation)

Training: p5.48xlarge instance with 8 H100 GPUs (28 hours)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Accelerating Reservoir Modeling with GPUbased Full-Physics Simulations

variables for reservoir flows Input models generation Ground truth data generation (GPU-based simulator) Training Data Validation Data **FNO Proxy model** Inference prediction Test Data FNO Layer ' Spectral convolution Hidden Input Representation $N_s \times N_{hidden} \times N_z \times N_x \times N_v$ $N_s \times N_{in} \times N_z \times N_x \times N_y$ Residual block convolution and saturations)

Generating full-field proxy models for predicting the time-evolving state Collaborators: Stone Ridge Technology & NVIDIA

- N_c denotes the number of samples used for training/validation/testing
- N_{in} is the number of input features (permeability, porosity, initial conditions of state variables, well positions)
- N_{x} , N_{v} , N_{z} are the spatial dimensions of the reservoir, N_{fno} is the number of FNO layers
- N_{dec} is the number of decoder layers, and N_{out} is the number of output channels (time snapshots of the state variables, pressure

AI/ML for Subsurface Flows

TRAINING LARGE 3D MODELS FOR HISTORY MATCHING, WELL PLACEMENT, INJECTION RATE OPTIMIZATION

Input features used for the FNO ML model Static permeabilities in all three spatial dimensions (3 channels) Porosity (1 channel) Initial conditions of the state variables (pressure and water saturation) (2 channels) Binary encoding of well positions (1 for location of producers, -1 for injectors) (1 channel)

Grid	64 x 64 x 64 orthogonal grid
Grid spacing	30 ft. x 30 ft. x 30 ft.
Permeability - x-, y-directions	200 mD
Permeability - z-direction	40 mD
Porosity	0.174
Water injector rate control (1 well)	5000 stb/day
Producer bottom hole pressure (4 wells)	4000 psia

500 samples, 400 are used for training, 75 for validation, and 25 for testing

For visual purposes, wells are pointing up (Z is positive)

AI/ML for Subsurface Flows

<u>Left</u>

- Full physics simulation
- Using MP Porous Media flow simulator
- 1 hr. for full physics

<u>Right</u>

- FNO Surrogate model
- Test on unseen data set
- ~10-15 sec (inference incl. data processing)

Plot of water front (0 water, 1-100%, contour ~0.25). Water injected from red well into reservoir.

> Channelized behavior captured pretty well across long time horizon

aws

Collaborators: Stone Ridge Technology & NVIDIA

✓ 2 H100 GPUs ~10 hours for training

✓ Inference run on A10G

GenerativeAl driven Asset Optimization

RESERVOIR SIMULATION ASSISTANT

aws

https://aws.amazon.com/blogs/industries/building-a-generative-ai-reservoir-simulation-assistant-with-stone-ridge-technology/

AWS collaborates with solution providers

AWS: Provides advanced compute services and solutions to enable user's ML for Simulation journey on the cloud. Innovates with customers to build tailored solutions.

SaaS: Provides software as a service (SaaS) applications on AWS that are user-friendly for simulation engineers and product designers without AIML expertise.

Private Cloud: Provides API based software solutions that can be deployed into user's own AWS account. It provides the flexibility and capability to preprocess data, train models and make predictions.

Open Source: Provides open-source framework for building, training, fine-tuning, and inferencing Physics-ML models on AWS. Users only pay for the underlying cloud infra/services.

Acknowledgements

Dr. Vidyasagar Ananthan

Senior Solutions Architect, Advanced Computing & Emerging Technologies Domain

Mr. Kumar Lakshmipathi

athi Principal Solutions Architect, Generative AI, Energy & Utilities

Accelerating Asset Design & Optimization using AI/ML

ACCESSIBLE RESOURCES FOR FURTHER DISCUSSIONS

AWS Engineering Design Solutions Library

aws

Blog: GenAI enabled Reservoir Assistant

AWS Solutions for Energy & Utilities

Blog: Machine Learning for faster design cycles

Thank you!

For feedback/questions, contact: Dr. Vedanth Srinivasan (Vedsrin@amazon.com)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.