

Accelerating CFD Simulations through HPC and AI on Rescale

SPE GCS - Annual Symposium

August, 2024

Company Overview

- Founded in 2011, HQ in San Francisco, locations in Amsterdam, London, Seoul, and Tokyo
- 300+ enterprise customers across all major Fortune 500 and Global 2000 enterprises
- #1 HPC solution for all major cloud providers
- Leading solution for R&D digital transformation

Semiconductor

Life Science

Manufacturing

Government

Investors

Al is Driving Transformation in Engineering

AI and Accelerated Computing Enable AI Physics Breakthroughs

Rescale CFD Benchmarks

Modern Engineering Teams Harness AI to Accelerate R&D Cycles

Deploy Custom AI Models for Continuous Product Improvement

Design Exploration & Optimization Cycle with Simulation + AI

1 Simulation Data Generation

2 Model Training & Deployment

Generate physics-based CFD data, label data & prepare training datasets

Automate workflows for training & deploying custom AI models

Validation & Tuning

Validate prediction accuracy and improve Al models with additional simulation

3 Inference & Prediction

Run inference to rapidly evaluate one or many designs with Al-driven predictions

Example: Optimizing Aerodynamics with AI Physics Inference

Description: Le Mans Hypercar Prediction Model Training with CFD data from STAR-CCM+ and Inference Predictions from NAVASTO NAVPACK

Turbomachinery Flow

Feature [unit]	Value range					
	min	baseline	max			
r1: inner radius [mm]	20	21.5	23			
r2: outer radius [mm]	55	57.5	60			
β1: at inlet [•]	20	23	26			
β2: at outlet [o]	17	20	23			
b2: at outlet [mm]	15	18	21			
ω [rpm]	28000	30000	32000			
p [kPa]	110	120	130			

- 2,000 design & operational condition variation
- 5 mins on 4 cores per run to generate dataset
- Network training 31000 epochs, 3 mins on a V100 GPU

Turbomachinery Flow

CFD

Predicted

Mach number comparison

CFD

Prediction

Flow over a reentry capsule

Crash simulation

$\square \ \leftarrow \ \rightarrow \ \bigcirc$			$\leftarrow \rightarrow$		Ø platform.rescale.com X
		Before			After
R&D Cloud	Model Input		R&D Cloud	Model Input	
🙀 Al Physics Design Explorer	Thickness Bumper		R Al Physics Design Explorer	Thickness Bumper	
Automotive Division Worksp Optimizing the Frame Stru	2		Automotive Division Worksp Optimizing the Frame Stru		
	Thickness t145			Thickness t145	
	2 5			5	
	Thickness t149			Thickness t149	
	3			3	
	Thickness t150			Thickness t150	
	3			3	
	Time Stamp			Time Stamp	
	C 10			0 10	
	Predict			Predict	
	Color By			Color By	
	Field name			Field name	
	displacement_pred × -			displacement_pred × +	
	Color Preset			Color Preset	
	Rainbow Blended White × +			Rainbow Blended White X +	
	Ex Color Range to Original Data			Fix Color Range to Original Data	
	Output			Output	
	Save to *vtp file			Save to *vtp file	
Jobs	Enter filename here Save		Uobs	Enter filename here Save	
Storage			Storage		
at Performance		displacement_pred	all Performance		displacement_pred NaN 100 200 300 400 500 600
Hotp erikrogne@rescale.com		Server nithult (1-1)	erikrogne@rescale.com		Server outruit- (1.1)

AI Physics Powered by NVIDIA

NC + Rescale

A FULLY PACKAGED, REPLICABLE AND SCALABLE END-TO-END WORKFLOW

----- REQUIREMENTS ----- EXPLORATION ------ VALIDATION ------ EXTRACTION -----

*

AI: Models: Real-time Capable 3D Surrogates for Simulation Train, Predict, and Validate Designs using Navasto on Rescale

New Design Candidate

The trained AI model can be queried with new design candidates to **predict the result of a simulation within milliseconds.**

Built for Seamless Integration for Any Enterprise

Rescale Metadata Management

Resource Tags: Share Simulation Context Fast and Flexibly

Features

- Schemaless tagging for flexible categorization
- Apply tags to Jobs, Elastic Cloud Workstations, and Files

Benefits

- Shared context on computing activities across projects and teams e.g. related studies, goal, outcome, stage
- Efficient organization of most important resources for increased visibility via search, sorting, and filtering
- Flexible schema-less format for customization and extensibility

Custom Fields: Capture Complete Details on Every Simulation

Features

- Admin-Enforced Fields: Ensure data consistency and governance with mandatory fields.
- **User-Defined Fields**: Enrich jobs with custom simulation parameters and results.

Benefits

- **Governance**: enforce process compliance with mandatory fields
- **Traceability**: revisit findings and decisions for audits, error detection, and revisions
- **Organization**: search by context rather than HPC data
- Analytics: connect various jobs and resources into a digital thread for enhanced collaboration and insight extraction

Let's Get Started!

- Contact Rescale team
- Arrange discovery calls
- Scope out a pilot program
- Set a routine customer meeting
- Celebrate the successful pilot
- Launch it in production

Lou Marchant lou@rescale.com

Mark Jackson mjackson@rescale.com

Madhu Vellakal madhu@rescale.com