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Webinar Etiquette

Gulf Coast Section
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Enter your message
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Here
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The moderator will review the questions and pass them to the
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Today’s Speaker

Gulf Coast Section

Dr. Yuxing Ben is a reservoir engineer at Occidental, where she develops
hybrid physics and data-driven solutions in the subsurface engineering
technology group. She was the principal developer of machine learning
technology for Anadarko's real-time drilling and hydraulic fracturing platforms.
She won the best paper award from URTeC 2019 and was selected as a

SPE distinguished lecturer for 2021.

Prior to Anadarko, Dr. Ben served as the technical expert for Baker Hughes'
hydraulic fracturing softwvare—MFrac. She has developed complex fracture
model for Halliburton and was a postdoc at MIT. She has authored more than

30 papers and holds three US patents.

She earned a BS in theoretical mechanics at Peking University, and a PhD in

chemical engineering from the University of Notre Dame.
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Outline

* Background
— What is Machine Learning (ML)
— Types of Machine Learning
e Application Cases
— Development and Deployment of Real-Time Drilling State Identification with ML
— Real-Time Hydraulic Fracturing (HF) Pressure Prediction with ML
— Real-Time HF Cost Optimization with ML and Model Predictive Control

 Takeaways and Future Development
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What is Machine Learning?

Data
Learn From Experience Learn From Experience Follow Instructions

el
f \_‘ (

Image captured from https://www.youtube.com/watch?v=2QgyH29x0 M
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What is Machine Learning?

“Machine learning (ML) is a field of study that gives computers the ability to learn
without being explicitly programmed.” (Arthur Samuel, IBM, 1959)
— The problem cannot be solved by “If Then” statements.

— Machine-learning programs adjust themselves in response to the data they’re exposed to.
(https://skymind.ai/)

“The field of machine learning is concerned with the question of how to construct
computer programs that automatically improve with experience.” ( Tom Mitchell,
Carnegie Mellon University, 1997)

ML is one of the ways we expect to achieve Artificial Intelligence (Al).

12



Types of Machine Learning

Machine
Learning

Task Driven Data Driven Learn from
(Predict next value) (Identify Clusters) Mistakes

I 3 i

https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f by Hunter Heidenreich
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https://towardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f

Machine Learning in Oil and Gas

Image Logs
Wellbore Trajectory Dimensionality Reservoir ~ Seismic Fault - classification—~ ~€2¥
Projection Reduction Simulation Detection Detection
Drilling State
Identification
Well log
Well Logs . . :
s Unsupervised Supervised Interpolation
. Learning Learning Regression Production
3D Seismic Cl . Forecast
Data ustering
Rate of HydraUIiC
Geoloaical Penetration Fracturing
g Forecast We”head Pressure
ata : .
Production . Prediction
Analysis Directional Reinforcement
Drilling .
Learning
Real-Time Hydraulic
Reservoir | Fracturing Cost Optimization
Optimization with Model Predictive Control
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Why Build a Real-Time Drilling Platform?

To improve drilling efficiency and optimization through real-time
monitoring and automation

» Engineers and field crews have multiple conflicting priorities
** Minimize wellbore tortuosity
+¢ Drill the lateral in the zone
+» Drive efficient, repeatable performance
» Practical priorities tend to outrank optimization efforts
» Asset teams are asking for automated, real-time analysis tools to:
¢ Enable fast, data-driven decisions
¢ Deliver repeatable workflows
¢ Lay a foundation for future technological advancements

(Ben, Y et al. URTEC-2019-253)
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Drilling Data Analytics

Real-Time Drilling Data

(Raw Sensor Data) .
e Starts with second-by-second data

Component Laye .
P y  Component layer uses rules to classify the status of

o LA L Sehs Status * Apply a second set of rules to determine a rig state

* Accuracy is extremely high except for Drilling because:
17 Rig States , ) - Y . .
In Slips Pumps Off * mud motor is used and “rocking” is used during

In Slips Pumps On sliding (SPE 87162)

Reaming In Pumps On * must be further classified into rotate or slide

Reaming Out Pumps On dri||ing

Slack Off Pumps On
Reaming Stationary Pumps On
Circulating
Reaming In Pumps Off

Reaming Out Pumps Off
Slack Off Pumps Off
Pick Up Pumps Off

etc.

Note: OBDA (if bit is on bottom and drilling ahead) 16



Surface RPM vs Time
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During rotate drilling, surface
RPM fluctuations due to set
point adjustment, drilling
dysfunction, or torque limits

b gia ]

12/20/2018 12:00:00 AM

B tdpad ¢ n Ak ¢ P s bkl il =

e i -t A
" R i A R R
b= oL =
Tk
-

o e A
= Mt

L L R S
' e Sl % e
- -
*p

...
o g a1, kgl

e e g ybag
Bwes wem ®

®
-

12/23/2018 12:00:00 AM 12/26/2018 12:00:00 AM

During slide drilling, surface RPM fluctuation
if rotation is added to re-orient or a top drive
oscillator is used to reduce static friction

Color by:
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Rotate Drilling
@ Slide Drilling
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Solution: Convert Drilling Time Series into a One-Dimensional
Image Classification Problem

Moving window to look back 20 seconds

Feature Selection

— RPM and torque %_

— Well section L
(vertical, curve, g —Y (drilling state
lateral) 2 at present)

Labeled 10 wells from
the Delaware Basin and
12 wells from DJ Basin

— About 11,000,000
rows of data

=
o
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Results from Three Different Classification

Machine Learning Approaches o
e Random forest
 Convolutional Neural Network el
(CNN) Well No 2
* Hybrid Recurrent Neural Network Well No 3

(RNN)+Convolutional Neural well No 4

Network(CNN) Well No 5

Well No 6

Well No 7
Well No 8
Well No 9

Well No 10

Delaware Basin

Re)



Deployment and Lessons Learned

Version Notes
1 ~70% accurate -

2 Dependent on
section and basin

3 Dependent on
section and basin

4 Dependent on
basin
) Universal model

Version 1 deployed before 7/2018
* \Version 2 deployed 12/2018

e Lessons Learned

 Wellbore section (vertical, curve, lateral)
are not always available

e Accuracy in production was lower than
expected

Model Evolution
« Removed model dependency on wellbore
section
 Added more training data and developed a
universal model

* Version 5 deployed 4/2019

20



Architecture of the Real-Time Drilling System

OpenWells Database s

RTD Analytics Modules

Siiice / ) * Drilling State
»  WITSML Connector Recognition (In
Company oo
s GKE) Live Ulin
StreamBase KPI One Minute ‘ MongoDB :
‘ web browser

WITSML Connection KP!

MS SQL Server Trajectory Plan vs
Actual
WITSML Days vs Depth
Data Directional
Store Calculation WITSML Wellsite information transfer standard

. Torque & Drag (in markup language
Digitalization GKE)

Transformation ECD Modeling ‘ GKE Google Kubernetes Engine
Apps ! Depth Log '
RSS Downlink MS sQL Microsoft Structured Query Language

PWP Digitizer Recognition (in GKE)
Drilling Program PWP Planned Well Path

Automation Tool . ECD
(DPAT) , StreamBase

Equivalent circulating density

MongoDB Data base by Mongo DB Inc

Live Ul Live User Interface




Directional Analysis

* Accurate rotate/slide
detection allows visualization
of motor orientation
(toolface) while sliding

 Can compare slide
performance to surveys and
drilling parameters to
diagnose problems and
optimization opportunities

5E
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— Man — Actual — DIS Motor Yield — Toolface

= Rotary drilling is represented by the gray colored stripes;
= Slide drilling is represented by the black colored strips;

= The motor orientation is represented by the pink line
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Application and Use Cases, continued

KPI

e Pad-level analysis shown
across six wells

* Rapidly compare
slide/rotate footage
percentages

e Analyze drilling rates
(ROP) between rotate
and slide drilling
between wells

@,
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N
-

Slide ROP
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Why Do We Need Real-Time Hydraulic Fracturing (HF)?SLEDR

* HF costs twice as much as drilling for onshore wells

R (Ben, Y et al. SPE 199699, 2020)

 Wellhead Pressure <~ SlurryRate

* If we can predict wellhead pressure, we can

* Prevent screen-out
 Optimize HF cost in real time by adjusting the pumping schedule
 Help completion engineers make better decisions in real time

24



Why Data-Driven Model?

Wellhead pressure includes the following contributions:

WHTP = BHFP — I:)hydrostatic N I:)pipefriction M I:)perforation M inb

Wellhead Bottomhole Near-wellbore
treating fracturing pressure
pressure pressure

Physics-based model
 Make assumptions

e Cannot simulate each of the contributions very well, such as the
near-wellbore tortuosity

25



Data Visualization Shows Strong Correlation Between
Wellhead Pressure and Proppant Concentration

— Wellhead Pressure

0 1000 2000 3000 4000 5000 £000 7000 8000

| — Bottom hole proppantM

0 1000 2000 000 4000 5000 6000 2000 8000
~— Proppant concentration ot ’

1000

s

1

1 = fr concentration

0 1000

| = Slurry rate

0 1000




Data Analysis Shows Strong Correlation of Wellhead
Pressure to Its History and Proppant Concentration

prop_conc_1 1.00
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lag time
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Autocorrelation coefficients show Pearson correlation coefficients shown in the
wellhead pressure depends on its past colored map summarize the strength of the
values. linear relationship between variables
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Wellhead Prediction by Neural Network

Slurry rate (t-120) Slurry rate (t-119) Slurry rate (t-1)
Prop conc (t-120) Prop conc (t-119) Prop conc (t-1)

Fr conc (t-120) Fr conc (t-119) Fr conc (t-1)
Wellhead Pres(t-120) Wellhead Pres(t-119) Wellhead Pres(t-1)

s =S

\§
/

Dq
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Apply Continuous Learning to Real-Time Wellhead

Pressure Forecasts for Better Accuracy

Time

Trainingdata | Testdata
-
Existing data

Model 1

Training data
- idld
Existing data
Model 2

Training data

Existing data

Model 3
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Neural Network Forecasting Errors Are Shown by the
Uncertainty Cones with Grey Shapes

w— Observed Pressure
—— Predicted Pressure
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Computation Is Fast Enough for Real-Time Forecasting

Computational Cost (minutes)

4

2

Computational Cost, Stage 17
: RNN (Recurrent
Neural Network)
o MLP (Multi-layer
o
2 perceptron)
3
)
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O
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960 1440 1920 2400 2880 3360 3840 4320 4800 5280 5760 6240 6720 7200 7680 8160
Training Length
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Real-Time Data Streaming on a Cloud Platform

- "

This can be realized by any cloud platform by leveraging the cloud functionality.

32



Deploy Continuous Learning Model on the Cloud

Cloud Database
Retrieve stage

GPU(Graphics 7\ G
processing unit)

Cloud Storage Cloud Firestore
Real Time Data Load model Retrieve pump

schedule

Wait 2 minutes

Real Time
Messaging Service Cloud GPU

Predict and publish Update model
to topic < weights and save

Real Time
Completions Ul
Display predictions )
to users

(cloud.google.com; azure.microsoft.com; aws.amazon.com)
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Hydraulic Fracturing Cost Remains the Same When
Slurry Rate and Pressure Are in a Certain Range

Service company 1 Service company 2 Can we adjust pumping
B e

$12,000.00 $20,000.00 ' -8501<P<=9000(psi) schedule to save

e iprens. completion costs on the
$18,000.00 | 9501<P<=10000(psi) S ,
——10001<P<=10500(psi) hydraulic horsepower?

10501<P<=11000(psi)
$10,000.00 $16,000.00 - =--11001<P<=11500(psi)
wweee 11501 <P<=12000(psi)

$14,000.00

$8,000.00

et
w
o
o

$6,000.00 $10,000.00

$8,000.00

$4,000.00 $6,000.00

$4,000.00
$2,000.00

_ . Ben, Y et al. SPE 199688
——0<P<=9200(psi) ’ '
- = 9200<P<=10500(psi) $2,000.00 2020. Reported by Drillin

10500<P<=15000(psi) contractor.

80 90 100




Optimization by Model Predictive Control

Develop a model based on existing data and make prediction about
future behavior

Set up constraints on the wellhead pressure and slurry rate,

proppant concentration, and friction reducer concentration Driving with Google Map

Hedwig
Village

fm) 18 - 28 min
12.6 miles

—e— Reference trajectory _, :
Predicted output AHES | el TG Sl

R Creek Village
—o— Measured output Piney Point
) ) Village
Predicted control input

Past control input

@ 16-30mi ,
Semes Enbridge Energy €

\ Company, Inc. ¥
 Discount Tire

Prediction horizon

. sctnarkiToliway ® V\




. I
Field Case: _D

Reducing Fr at the Heel Stages to Save Cost

* Cost of hydraulic horsepower is the same
* Average wellhead pressure decreases from toe stage to heel stage

70

V)

\VERAGE SLURY RATE (BPN\

)5S0 1 90
A » ,
- Average Rate (bpm)
ar
8(
1000 )
T 70
\ /
60 £
950X
—
850

‘.»/‘111>'f;/'2’ ))‘3,’.3:

Well No. 1 Well No. 2
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Predict Wellhead Pressure with System Identification

* Basic representation:
dx(t)
dt

* Focus on variables that can be adjusted in real time by a completion
engineer

= Ax(t) + Bu(t)

x(t): wellhead Pres
( prop conc
u(t): { slurry rate
\ fr conc




Proposed Workflow for Model Predictive Control (MPC)

to Optimize Costs

Add new
available data

Proppant concentration

Friction reducer concentration

Manipulated variables

Potential
screenout

Wellhead pressure

Measured
output

Set point

totaly,,, < total planned proppant ?

38



Cost Saving by Increasing Proppant Concentration and

Reducing Fr

Scenario 1:
Constraint: Ap=50 psi

Assumption: Increasing
50 psi won’t increase the
cost on hydraulic
horsepower

Input Response (against internal plant)

mect

Output Response (against intemal plant)

mpct
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Cost Saving by Increasing Proppant Concentration and
Reducing Fr

Scenario 2: Constraint: Ap=50 psi, Maxy,,, = 0.5, and Maxpyyep = 0.25
Assumption: Increasing 50 psi won’t increase the cost of hydraulic horsepower

D
Input Response (against internal plant) Output Response (against intemal plant)

—

mpct } mpct

40



Takeaways 1: Summary of the Examples

e What have we done?

— Developed and deployed a universal machine learning model with high accuracy
for all onshore unconventional rigs in the whole company

— Demonstrated how to use the Cloud to deploy a machine learning model that
can be updated in real time

— Developed a workflow to optimize hydraulic fracturing costs
 What have we learned?

— Machine learning can perform much better than a rule-based model.

— A successful machine learning application requires collaboration of data scientist,
drilling/completion engineers, data engineers, and software developers.

41



Takeaways 2: Future Development - Algorithms

Subsurface Ph)_’SiCS Data Center Mach!ne Real-Time Hydraulic
Flow Guided Cooling Learning Fracturing Cost
Reservoir Learning Control Optimization
Simulation :
Reservoir and

Field Development

Hybrid : C . L.
Phy;{ics ML Physics- Opgrrgzailors Optimization Artificial Lift
an ontro imizati
Modeling Based Model Optimization
Seismic
Activity Drilling Gas Pipeline
Prediction Optimization Optimization
Residual
Modeling
Reservoir Statistical
Simulation Learning
Missing Small Data
Data Set
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Takeaways 3: Future Development — Infrastructure

Frac Van

Cloud -~ :
Computing g;::ggg Rigs
Data Edge Edge
SHOfEEE Geue Devices Computing
Data )
Streaming Ez_alch option has pros and cons.
_ It is up to you to decide!
On-Premise
Computer
Dl Cluster
Storage

Computing
43



Takeaways 4: Risks and Remedies

NELS Remedies
> Scenarios are not represented in the v' Using engineering judgement
training data. v’ Set up alerts in the system to identify
> In case of failure, it might be very outliers
difficult to establish responsibilities. v’ Establish liabilities between service
» 'Hidden' biases derived from the data companies and operators
» Malicious adversaries can potentially v' Collaborate with other industries to
attack the systems by poisoning the bring best practices to the oil and gas
training data industry

(https://www.europarl.europa.eu/RegData/etudes/STUD/2019/624261/EPR

S STU(2019)624261_EN.pdf)
44
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Gulf Coast Section

Upcoming Webinars (11:30 AM - 1 PM)

Date Venue Theme
: “Drill Rig Control Systems: Detecting Auto Driller dysfunction
17-Mar-22 Webinar and Improving Behavior” by Paul Pastusek, ExxonMobil
21-Apr-22 Hybrid “‘Energy Insights” by Congresswoman Lizzie Fletcher, Texas
P Petroleum Club 7th Congressional District
*5-May-22 Hybrid “Drilling Technology Research Overview” by Dr. Ozbayoglu,
TBC Petroleum Club University of Tulsa

SPE-GCS Drilling Study Group
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USD 10 - 15 per year

® *Based on country of residence WWW.S PE.O RG/EN/JOIN/RENEW/



Stayin Touch

otManagementG
BluctionGClays = %

rﬁa%‘.tyq,”wolf% R Update your emaill

Continuin (/

Dﬁ{ﬁ'ﬁéggﬁ?%c e 4XM preferences to hear from

Facilities :
;Y;:;E%Bgz,;f;ca rtzzgggjgh your favorite study groups
‘Dovelsp and committees In the
Siintiditissy SPE Gulf Coast Section

Scholarshlp/lnternshlp

rioNSWestsideComputatig

p\e" " professionalsWorkshg
Innovatelnternatj
Inclusion

@ http://spe-gulfcoast.informz.net/spe-
¥ gulfcoast/default.asp?fid=3590




SPE MEMBERSRHIIP

Leadership
Volunteer : : Sh Industry
opportunities B"'ir:f::ﬁtm" knnw?;fige recognition

with peers

Online ) ) ] _
Education, Free Wide ranges, Networking with Registration
wesinics”" |G industry e
ucts, .
services professionals content

=% WWW.SPE.ORG/EN/JOIN/RENEW/



Update Email Preferences

Gulf Coast Section

Please remember to update your email preferences so that you are getting all of the emails for
the various study groups/committees using this link:

Using the GCS Website (Option 1)
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Gulf Coast Section
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- International
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