URTeC-125

Production Effects from Frac-Driven Interactions in the SE Midland Basin, Reagan Co., TX

Bryan McDowell*, Alan Yoelin, Brad Pottebaum

4 October 2019

Contact Info:

Bryan McDowell
Technical Advisor, Asset Development
Discovery Natural Resources
bryan.mcdowell@discoverynr.com

Introduction

Introduction

- As operators transition from field delineation to field development, frac-driven interactions (AKA frac hits) are becoming more common and more severe in most unconventional shale plays
 - Miller et al. (2016), King et al. (2017), Pankaj (2018)

- DNR had observed FDIs company acreage but had not evaluated them systematically
 - Decided to quantify the effects within an area of active development

What Are Frac-Driven Interactions?

 Frac-driven interactions (FDIs) formalized by Daneshy & King (2019)

- Variety of interactions:
 - Child-Parent pressure/fluid hits
 - Child-Child pressure/fluid hits

Goals

- 1. Document FDIs in active area of development
- 2. Quantify FDI frequency, intensity
- 3. Create rules-of-thumb for shut-in procedures

Methods

Workflow

- 1. Identify FDIs from offset frac jobs
- 2. Categorize parent-child spatial relationship
- 3. Measure inter-well distance
- 4. Plot FDI category vs. inter-well distance
 - Filter by different criteria

Study Area/Wells

Study area

Midland basin, Reagan Co., TX

Study wells

- 47 horizontal wells
- 16 vertical wells
- 17 multi-well frac jobs

FDI Interpretations

- Based on changes in oil rate, WOR, and GOR after an offset frac job
 - Must distinguish between flush production vs. FDIs

- Parent wells were reviewed if they were either...
 - Within one mile directly east or west of a frac job OR
 - Within a 500-ft radius of the heel or toe of a frac job

FDI Interpretations

- 1. No FDI
- 2. Oil banking
- 3. Small water hit
- 4. Moderate water hit
- 5. Large water hit

Parent-Child Spatial Relationships

Wellbore Geometry	Offset direction	Hz "buffer" well?	Configuration
Horizontal	Direct	False	A
		True	В
	Indirect	False	С
		True	D
	In-line		E
	Stacked		F
Vertical	Direct	False	G
		True	Н
	Indirect	False	I
		True	J

(a) (b) Parent Inter-well Inter-well distance distance Parent well Parent well Inter-well distance Parent well Parent well Child wells Child wells

Direct Offsets (Horizontal wells)

Direct Offsets

(Vertical wells)

Parent well (a) Parent Child wells

Indirect Offsets (Horizontal wells)

Indirect Offsets

(Vertical wells)

In-line Offsets

Stacked Offsets

Horizontal "Buffer" Well

Results

All Configurations

Vertical vs. Horizontal Parent Wells

Direct vs. Indirect Offsets

In-line vs. Stacked Offsets

Direct Offsets Without vs. With "Buffer" Well

Indirect Offsets Without vs. With "Buffer" Well

Major Takeaways (1/2)

 Horizontal wells receive FDIs more frequently, and with greater intensity, than vertical wells

- Stacked or direct offset parent wells receive FDIs more frequency and greater intensity
- FDI frequency and intensity is strongly correlated with inter-well distance
 - More strongly correlated for vertical wells

Major Takeaways (2/2)

- "Buffer" wells significantly reduce FDI frequency and intensity
 - Albeit at the expense of the "buffer" well itself
- Oil banking is occasionally encountered in horizontal wells but not observed in vertical wells
 - EDIT: Oil banking has been observed in vertical wells in other areas

 Most parent wells received either (a) small/moderate water hits or (b) no FDI at all

Discussion

Discussion (1/2)

- End-member results not surprising
 - Horizontal vs. vertical wells
 - Direct vs. Indirect vs. In-line vs. Stacked offsets
 - "Buffer" well present vs. absent

 However, the cumulative effect of each layer was more marked than anticipated

Discussion (2/2)

 The efficacy of "buffer" wells was not foreseen but aligns with field experience

- Positive FDIs were not recognized previously despite its occurrence in other unconventional plays
 - See Miller et al. (2016), Pankaj (2018)

• FDIs are a nuisance but do not appear to pose a major risk

Conclusions

Conclusions (1/2)

- FDI frequency/intensity are a strong function of:
 - 1. Wellbore geometry
 - 2. Offset direction between the parent/child well
 - 3. Presence/absence of a "buffer" well
 - 4. Distance

Conclusions (2/2)

 FDIs are not a significant risk to oil production in parent wells in SE Midland basin

- Production effects are:
 - Usually limited to increased water production and lower GORs
 - Usually temporary (weeks to months)

Questions?

References

References

- Daneshy, A. and King, G. E. 2019. Frac-Driven Interaction (FDI) Between Horizontal Wells: Causes, Consequences and Mitigation Techniques. Hydraulic Fracturing Journal 5 (4): 4–30.
- King, G.E., Rainbolt, M.F., and Swanson, C. 2017. Frac hit induced production losses: Evaluating root causes, damage location, possible prevention methods and success of remedial treatments. Presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 9 11 October. SPE-187192-MS. https://doi.org/10.2118/187192-MS.
- Miller, G., Lindsay, G., Baihly, J., et al. 2016. Parent well refracturing: Economic safety nets in an uneconomic market. Presented at the SPE Low Perm Symposium, Denver, Colorado, USA, 5 6 May. SPE-180200-MS. https://doi.org/10.2118/180200-MS.
- Pankaj, P. 2018. Decoding positives or negatives of fracture-hits: A geomechanical investigation of fracture-hits and its implications for well productivity and integrity. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, 23 – 25 July. URTEC-2876100-MS. https://www.onepetro.org/conference-paper/URTEC-2876100-MS.

